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Abstract

Document-level relation extraction (RE) aims to extract re-
lational triples from a document. One of its primary chal-
lenges is to predict implicit relations between entities, which
are not explicitly expressed in the document but can usually
be extracted through relational reasoning. Previous methods
mainly implicitly model relational reasoning through the in-
teraction among entities or entity pairs. However, they suf-
fer from two deficiencies: 1) they often consider only one
reasoning pattern, of which coverage on relational triples is
limited; 2) they do not explicitly model the process of re-
lational reasoning. In this paper, to deal with the first prob-
lem, we propose a document-level RE model with a reason-
ing module that contains a core unit, the reasoning multi-
head self-attention unit. This unit is a variant of the con-
ventional multi-head self-attention and utilizes four attention
heads to model four common reasoning patterns, respectively,
which can cover more relational triples than previous meth-
ods. Then, to address the second issue, we propose a self-
distillation training framework, which contains two branches
sharing parameters. In the first branch, we first randomly
mask some entity pair feature vectors in the document, and
then train our reasoning module to infer their relations by ex-
ploiting the feature information of other related entity pairs.
By doing so, we can explicitly model the process of rela-
tional reasoning. However, because the additional masking
operation is not used during testing, it causes an input gap
between training and testing scenarios, which would hurt the
model performance. To reduce this gap, we perform con-
ventional supervised training without masking operation in
the second branch and utilize Kullback-Leibler divergence
loss to minimize the difference between the predictions of
the two branches. Finally, we conduct comprehensive exper-
iments on three benchmark datasets, of which experimen-
tal results demonstrate that our model consistently outper-
forms all competitive baselines. Our source code is available
at https://github.com/DeepLearnXMU/DocRE-SD.

Introduction
Human knowledge can be efficiently expressed and stored
in the form of relational triple (es, r, eo), where es and eo
are subject and object entities, respectively, and r represents
the relation between them. Since these structured knowledge
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Figure 1: An example with two reasoning patterns from the
DocRED dataset. ei denotes an arbitrary entity in the doc-
ument. In the box at the bottom, the left relational triples
are clearly expressed in the document, while the right ones
are not explicitly expressed but can be inferred via differ-
ent reasoning patterns. The arrow in the middle indicates the
reasoning patterns used to infer the right relational triple.

could benefit many downstream applications, e.g., ques-
tion answering (Dong et al. 2015) and information retrieval
(Wang et al. 2017), many efforts have been devoted to the
studies of relation extraction (RE), which aims at automati-
cally extracting relational triples from plain text. In this as-
pect, previous studies focus primarily on sentence-level RE,
where both considered subject and object entities are located
within the same sentence (Zhang, Qi, and Manning 2018;
Baldini Soares et al. 2019). However, the performance of
sentence-level RE models are often unsatisfactory in prac-
tice since abundant of relational facts are expressed by mul-
tiple sentences (Yao et al. 2019). Therefore, many recent
studies (Xu et al. 2021; Zhou et al. 2021) have shifted their
attention to document-level RE that leverages the whole in-
put document to extract relational triples.

However, one of the primary challenges of document-
level RE is to predict implicit relations between entities.
Usually, these relations are not explicitly expressed in the
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document and can be extracted via relational reasoning,
which aims to exploit the dependence among entities and en-
tity pairs to infer implicit relations. For example, in Figure 1,
the relation characters between X-Files and Samantha is an
implicit one, whose prediction can be refined by exploit-
ing the information of the other two entity pairs, (X-Files,
Mulder) and (Mulder, Samantha). To effectively model rela-
tional reasoning, most existing methods (Guo et al. 2019;
Zeng et al. 2020; Nan et al. 2020; Xu et al. 2021) uti-
lize graph neural networks (GNNs) to capture the entity- or
mention-level dependence. Meanwhile, since Transformer
(Vaswani et al. 2017) can effectively model long-range de-
pendence, some studies (Tang et al. 2020; Zhou et al. 2021)
directly utilize pre-trained language models (PLMs) to learn
better entity or entity pair representations for implicit rela-
tion predictions. Furthermore, some recent studies (Zhang
et al. 2021; Tan et al. 2022) focus on leveraging the depen-
dence among entity pairs to infer implicit relations between
entities. In spite of their success, they still have inherent de-
fects. First, they usually only consider the first reasoning
pattern shown in the middle box of Figure 1, which, how-
ever, only covers limited relational triples. Back to the bot-
tom box of Figure 1, the relation between X-Files and Rob
Bowman can only be successfully predicted via the second
reasoning pattern. Second, they do not explicitly model the
process of relational reasoning during training, which is un-
able to fully exert the potential of relational reasoning.

To deal with the first problem, in this paper, we propose
a document-level RE model with a reasoning module that
can effectively exploit the dependence among entity pairs
for relational reasoning. As shown in Figure 2(b), reasoning
module contains a core unit, the reasoning multi-head self-
attention (R-MSA) unit, which is a variant of the conven-
tional multi-head self-attention and utilizes four attention
heads to model four common reasoning patterns (See Table
1), respectively. Compared with previous studies (Zeng et al.
2020; Zhang et al. 2021; Tan et al. 2022) that mainly con-
sider the first pattern, our reasoning patterns are more com-
prehensive and have higher coverage of relational triples.

To address the second issue, we propose a self-distillation
training framework, which can significantly enhance the rea-
soning ability of our model. As shown in Figure 3, our
framework consists of two branches. In the first branch,
we randomly mask some entity pair feature vectors in the
document and treat their relations as pseudo implicit ones.
Then, we train our reasoning module to infer these rela-
tions by exploiting the feature information of other related
entity pairs. By doing so, we can explicitly model the pro-
cess of relational reasoning, which can provide our model
with more explicit reasoning supervision signals. However,
because this masking operation is not used during testing,
it causes an input gap between training and testing scenar-
ios, which would hurt the model performance. To bridge this
gap, in the second branch, we conduct conventional super-
vised training without masking operation, which is consis-
tent with the testing scenario of our model. Meanwhile, we
use a Kullback-Leibler (KL) divergence loss to minimize the
difference between the predictions of the two branches. In
this way, we can transfer the reasoning ability learned from

the training of the first branch to the testing scenario. In par-
ticular, to further improve our model, we employ a curricu-
lum learning strategy to dynamically select masked entity
pairs in an easy-to-hard manner. To demonstrate the effec-
tiveness and generality of our model, we conduct compre-
hensive experiments on three public datasets, of which re-
sults show that our model consistently outperforms all com-
petitive baselines.

Our Model
In this section, we describe the proposed model in detail. As
illustrated in Figure 2(a), our model consists of two com-
ponents: an encoder and a reasoning module. We detail our
encoder and reasoning module in Section and Section , re-
spectively, and then introduce a novel self-distillation train-
ing framework for our model in Section .

Encoder
We employ a pre-trained language model (PLM) as our en-
coder to learn better contextual representations of entities.
Following Zhang et al. (2021), we then use these represen-
tations to construct an entity pair feature matrix, so as to
facilitate the computation of reasoning module.

Formally, an input document D often contains multiple
entities {ei}Ni=1, where each entity ei may occur multiple
times as mentions {mi

j}
Nei
j=1. Following Zhou et al. (2021),

we first mark the position of each mention in the input doc-
ument by inserting a special symbol “∗” at its start and end
positions. Then, we feed the document into the PLM to ob-
tain its contextual embeddings, H = [h1, h2, ..., h|D|]. Here,
we take the contextual embedding of the special token “∗” at
the start of each mention as its embedding, and then employ
logsumexp pooling (Jia, Wong, and Poon 2019) to obtain the
representation h(ei) of entity ei by aggregating all its men-
tion embeddings: h(ei) = log

∑Nei
j=1 exp(h(m

i
j )).

Then, the feature vector Fs,o of the entity pair (es,eo) is
calculated via a feed-forward neural network (FNN):

Fs,o = FNN
([

tanh(Ws[h(es); cs,o]);

tanh(Wo[h(eo); cs,o])
)
,

(1)

where Wo and Ws are learnable weight matrices, and cs,o
denotes the localized context embedding (Zhou et al. 2021)
encoding the contextual information specific to (es,eo).
More specifically, cs,o is computed as

cs,o = HT As ◦Ao

1T(As ◦Ao)
, (2)

where As and Ao denote the PLM last-layer attention
weights of entities es and eo to all tokens in the document,
respectively, and ◦ refers to element-wise multiplication.

Finally, all entity pair feature vectors within the doc-
ument are merged to form an entity pair feature matrix
M (0)=[Fs,o]N×N , where each row M

(0)
s,∗ corresponds to a

subject entity es and each column M
(0)
∗,o corresponds to an

object entity eo.

13968



Figure 2: Our model is composed of an encoder and a reasoning module, where reasoning module consists of L reasoning
layers and a classifier. Each reasoning layer contains a core component, the R-MSA unit, which is a variant of the conventional
multi-head self-attention and utilizes four attention heads to model four common reasoning patterns, respectively.

Reasoning Pattern Example Rate

(1) [(es, r1, ei), (ei, r2, eo)] ⇒ (es, r3, eo) [(Bob, father, Danny), (Danny, spouse, Anna)]⇒(Bob, mother, Anna) 24.83%

(2) [(ei, r1, es), (ei, r2, eo)] ⇒ (es, r3, eo) [(Bob, brother, Harry), (Bob, father, Danny)]⇒(Harry, father, Danny) 19.28%

(3) [(es, r1, ei), (eo, r2, ei)] ⇒ (es, r3, eo) [(Bob, father, Danny), (Harry, father, Danny)]⇒(Bob, brother, Harry) 24.69%

(4) [(eo, r1, ei), (ei, r2, es)] ⇒ (es, r3, eo) [(Bob, mother, Anna), (Anna, spouse, Danny)]⇒(Danny, child, Bob) 7.70%

Table 1: Illustration of the four common reasoning patterns. ⇒ denotes the reasoning operation. In the last column, we calculate
the ratios of relational triples that can be inferred by these reasoning patterns on the DocRED dataset. Please note that unlike
previous methods that generally only consider the first pattern, our model models these four patterns, as shown in Figure 2(c).

Reasoning Module
Based on the entity pair feature matrix M (0), our reason-
ing module aims to learn more expressive entity pair rep-
resentations, with which we can infer implicit relations be-
tween entities. As shown in Figure 2(b), the reasoning mod-
ule is composed of L reasoning layers, stacked by a classi-
fier. Each reasoning layer contains four components: a rea-
soning multi-head self-attention (R-MSA) unit, a FFN unit,
and two layer normalization sublayers. Back to Figure 2(c),
the R-MSA unit is a variant of the conventional multi-head
self-attention, which is equipped with four attention heads
to model four common reasoning patterns, respectively. Ta-
ble 1 illustrates these four reasoning patterns and their cor-
responding examples. We find that these four patterns can
cover significantly more relational triples than previous stud-
ies (Zeng et al. 2020; Zhang et al. 2021; Tan et al. 2022) that
generally only consider the first pattern.

Since the calculation procedures of all R-MSA heads are
similar, we take the first head as an example to elaborate its
details. Specifically, for the entity pair (es,eo), at the (l+1)-
th reasoning layer, we first concatenate the corresponding
entity pair feature vectors in the s-th row and o-th column
of the entity pair feature matrix M (l), and then reduce their
dimensions through a single linear layer:

F
(l,1)
i = Wd

[
M

(l)
s,i ;M

(l)
i,o

]
+ bd, i = {1, 2, · · · , N} , (3)

where Wd and bd are trainable parameters, and [· ; ·] repre-

sents the concatenation operation. Next, we obtain the out-
put vector M

(l,1)
s,o of the first R-MSA head for entity pair

(es,eo) through an attention mechanism:

M (l,1)
s,o =Attention

(
Q,K, V

)
,

where Q=M (l)
s,o, K=V=

[
M (l)

s,o;F
(l,1)
1 ; · · · ;F (l,1)

N

]
.

(4)

Note that the two superscripts of M
(l,1)
s,o and F

(l,1)
i indi-

cate the reasoning layer index and attention head index, re-
spectively, and their subscripts are the entity indexes. Af-
terwards, we aggregate the outputs of all R-MSA heads to
produce the output of the R-MSA unit:

M̃ (l)
s,o=LN

(
M (l)+WO

[
M (l,1)

s,o ; · · · ;M (l,4)
s,o

]
+bO

)
, (5)

where WO and bO are model parameters, and LN(·) is the
layer normalization (Ba, Kiros, and Hinton 2016) function.

Finally, the output of the (l+1)-th reasoning layer is com-
puted as follows:

M (l+1)=LN(M̃ (l) + FNN(M̃ (l))), (6)

where M̃ (l)=[M̃
(l)
s,o]N×N . After repeating the above process

L times, we can get a more expressive feature matrix M (L).
Based on M (L), we use a single-layer classifier to predict

the relational probability distribution for entity pair (es,eo):

p(r|es, eo) = σ(WcM
(L)
s,o + bc), (7)

where Wc and bc are learnable parameters of the classifier.
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Figure 3: Illustration of our self-distillation training frame-
work, which consists of two branches. In the first branch,
we explicitly model the process of relational reasoning. In
the second branch, we do not perform masking operation,
which is consistent with the testing scenario of our model.

Model Training
To better train our reasoning module, we propose a self-
distillation training framework. As shown in Figure 3, our
framework consists of two branches.

The first branch. Inspired by Masked Language Mod-
eling (MLM) (Devlin et al. 2019), in this branch, we first
randomly select some entity pairs and replace their feature
vectors in M (0) with a special [Mask] vector, forming a new
feature matrix M̂ (0). Then, we feed M̂ (0) into reasoning
module to predict the relation probability distributions of all
entity pairs, denoted by {p̂(r|es, eo)}. Finally, we train rea-
soning module to accurately infer the relations of the masked
entity pairs. By doing so, we explicitly model the process of
relational reasoning, which can provide reasoning module
with more explicit reasoning supervisory signals. Note that
during testing, we do no mask any entity pair feature vector
because it may cause the model performance degrade. Thus,
this masking operation leads to the input gap between the
training and testing of our model.

The second branch. To reduce the above gap, in this
branch, we directly input the original entity pair feature ma-
trix M0 to reasoning module, obtaining the relation proba-
bility distributions {p(r|es, eo)}. Note that this branch does
not perform the above masking operation and thus is com-
patible with the testing scenario. Afterwards, we introduce a
KL divergence loss Lkl to minimize the difference between
p(r|es, eo) and p̂(r|es, eo), formulated as

Lkl = KL
(
p(r|es, eo)||p̂(r|es, eo)

)
. (8)

Training objective. Using ground-truth labels as super-
visory signals, we also introduce two classification losses,
Lc and L̂c, to supervise the relation predictions of the two
branches. Thus, the final training objective of our model is
formulated as

L = Lc + L̂c + Lkl. (9)

To address the multi-label and imbalanced label distribution
problems, we adapt adaptive thresholding loss (Zhou et al.
2021) to model our classification losses Lc and L̂c. Specif-
ically, we introduce a special relation class TH and use its
logits logitTH as the adaptive threshold value for each entity
pair, where we expect that all logits of target relation classes
Rpos are greater than logitTH while all logits of non-target

relation classes Rneg are less than logitTH:

Lc=−
( ∑

r∈Rpos

log
( exp(logitr )∑

r′∈{Rpos,TH} exp(logitr ′)

))

− log
( exp(logitTH)∑

r′∈{Rneg,TH} exp(logitr ′)

)
. (10)

Curriculum Learning. To further improve the training
of our model, in the first branch, we employ a curricu-
lum learning strategy to dynamically select masked entity
pairs in an easy-to-hard manner. We uniformly sample γt
percent of entity pairs from the entity pair feature matrix
M0 as the masked ones. Intuitively, a greater mask rate
may make model training more difficult. Therefore, to bet-
ter train our model, we begin training with a small mask rate
and linearly increase it to the maximum mask rate γmax:
γt = min(γmax,

t
T ), where t is the current training step,

and T is the maximal training step.

Experiments
Datasets
We evaluate our model on three commonly-used datasets:
• DocRED (Yao et al. 2019). It is a large-scale human-

annotated dataset for document-level RE, which is con-
structed from Wikipedia and Wikidata. It contains 96
target relations, 132,275 entities, and 56,354 relation-
ship triples in total. In DocRED, more than 40.7% of
relational facts can only be extracted from multiple sen-
tences, and 61.1% of relational triples require relational
reasoning. We follow the standard split of the dataset,
3,053 documents for training, 1,000 for development
and, 1,000 for the test.

• CDR (Li et al. 2016). It is a biomedical dataset and con-
sists of 1,500 PubMed abstracts, which are equally di-
vided into three sets for training, development, and test-
ing. On this dataset, the model is expected to predict the
binary relations between Chemical and Disease entities.

• GDA (Wu et al. 2019). This dataset is a large-scale
biomedical one, which is constructed from MEDLINE
abstracts by method of distant supervision. GDA con-
tains 29,192 documents as the training set and 1,000 as
the test set. It contains only one target relation between
Chemical and Disease entities, i.e., Chemical-Induced-
Disease. We follow Tang et al. (2020) to divide the train-
ing set into two parts, 23,353 documents for training and
5,839 for development.

Settings
Using PyTorch, we develop our model based on Hugging-
face’s Transformers (Wolf et al. 2020). We use BERT-base
(Devlin et al. 2019) or RoBERTa-large (Liu et al. 2019) as
the encoder on DocRED, and SciBERT-base (Beltagy, Lo,
and Cohan 2019) on CDR and GDA. We employ AdamW
(Loshchilov and Hutter 2019) to optimize our model with a
linear warmup (Goyal et al. 2017) for the first 6% steps. We
empirically set the layer number L of reasoning module to
2. We apply dropout (Srivastava et al. 2014) between layers

13970



Model Dev Test

IgnF1 F1 Intra-F1 Inter-F1 Infer-Ac IgnF1 F1

GEDA-BERT (Li et al. 2020)† 54.52 56.16 − − − 53.71 55.74
LSR-BERT (Nan et al. 2020)† 52.43 59.00 65.26 52.05 − 56.97 59.05
GLRE-BERT (Wang et al. 2020)† − − − − − 55.40 57.40
GAIN-BERT (Zeng et al. 2020)† 59.14 61.22 67.10 53.90 58.42* 59.00 61.24
HeterGSAN-BERT (Xu et al. 2021)† 58.13 60.18 − − − 57.12 59.45
SSAN-BERT (Xu et al. 2021)† 56.68 58.95 − − − 56.06 58.41

BERT-base (Wang et al. 2019)† − 54.16 61.61 47.15 − − 53.20
BERT-TS (Wang et al. 2019)† − 54.42 61.80 47.28 − − 53.92
HIN-BERT (Tang et al. 2020)† 54.29 56.31 − − − 53.70 55.60
CorefBERT (Ye et al. 2020)† 55.32 57.51 − − − 54.54 56.96
ATLOP-BERT (Zhou et al. 2021)† 59.22 61.09 − − 58.29* 59.31 61.30

DocuNet-BERT (Zhang et al. 2021)† 59.86 61.83 − − − 59.93 61.86
SIRE-BERT (Zeng et al. 2021)† 59.82 61.60 68.07 54.01 − 60.18 62.05
KD-BERT (Tan et al. 2022)† 60.08 62.03 − − 58.93* 60.04 62.08

Ours-BERT(SD→KD) 59.83 61.76 68.12 54.09 59.31 59.94 61.81
Ours-BERT(SD→R-Drop) 60.12 61.92 68.39 54.92 59.74 60.11 62.03
Ours-BERT 60.85±0.10 62.81±0.13 68.67±0.11 56.09±0.21 61.08±0.18 60.91 62.85

Table 2: Experimental results on the development and test sets of DocRED. We report the mean and standard deviation on
the development set by conducting five experiments with different random seeds. Besides, we report the official test scores of
the best checkpoint on the development set. † indicates original paper scores. Results with * are obtained by our reproduction.
KD denotes the vanilla knowledge distillation and SD means our self-distillation training framework. SD→KD ( SD→R-Drop)
means to replace our SD with KD (R-Drop).

with rate 0.1, and clip the gradients of model parameters to
a maximal norm of 1.0. All hyper-parameters are tuned on
the development set.

Baselines
We compare our model with the following baselines:

GNN-based Models. These models build task-specific
document graphs to capture the dependence among enti-
ties or mentions for relational reasoning. Here, we consider
EoG (Christopoulou et al. 2019), DHG (Zhang et al. 2020),
GEDA (Li et al. 2020), LSR (Nan et al. 2020), GLRE (Wang
et al. 2020), GAIN (Zeng et al. 2020), HeterGSAN (Xu et al.
2021), and SSAN (Xu et al. 2021) for comparison.

Transformer-based Models. These models aim to ex-
tract more useful information from PLMs to enhance en-
tity or entity pair representations for better relation predic-
tions. Our considered baselines include BERT-base (Wang
et al. 2019), BERT-TS (Wang et al. 2019), HIN-BERT (Tang
et al. 2020), CorefBERT (Ye et al. 2020), and ATLOP-BERT
(Zhou et al. 2021).

Furthermore, we also compare our model with some re-
cent studies, including DocuNet (Zhang et al. 2021), SIRE
(Zeng et al. 2021), and KD (Tan et al. 2022). Similar to us,
they also attempt to exploit the dependence among entity
pairs for relational reasoning.

Effect of Maximum Mask Rate γmax

We first investigate the effect of the hyper-parameter γmax

on our model. To this end, we conduct an experiment with
different γmax on the DocRED dataset, of which results are
shown in Figure 4. We observe that our model is not very

Figure 4: The performance of our model with different max-
imum mask rates γmax on the development set of DocRED.

sensitive to γmax, and achieves the best performance when
γmax is set to 0.2. Therefore, we set γmax=0.2 for efficiency
in subsequent experiments.

Results on the DocRED Dataset
Following Yao et al. (2019), we report F1 and IgnF1 scores
on the DocRED dataset, where IgnF1 is computed by ex-
cluding relational triplets appearing in the training set. From
Table 2, we can find that our model consistently outperforms
all competitive baselines. Moreover, we draw several inter-
esting conclusions:

First, compared with our base model, ATLOP-BERT, our
model achieves improvements of 1.55 F1 and 1.60 IgnF1

points on the test set. Note that ATLOP-BERT is essentially
a variant of our model, where our reasoning module and
self-distillation training framework are removed. Thus, these
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Model CDR GDA

BRAN (Verga et al. 2018) 62.1 −
EoG (Christopoulou et al. 2019) 63.6 81.5
LSR (Nan et al. 2020) 64.8 82.2
DHG (Zhang et al. 2020) 65.9 83.1
GLRE (Wang et al. 2020) 68.5 −
SciBERT (Beltagy, Lo, and Cohan 2019) 65.1 82.5
ATLOP-SciBERT (Zhou et al. 2021) 69.4 83.9
DocuNet-SciBERT(Zhang et al. 2021) 76.3 85.3

Ours-SciBERT 76.8 86.4

Table 3: The F1 scores on the CDR and GDA test sets.

results clearly demonstrate that our reasoning module and
training framework can effectively improve document-level
RE. Besides, we note that GNN-based models achieve worse
results than models that exploit the dependence among en-
tity pairs for relational reasoning, such as DocuNet-BERT
and KD-BERT. This observation suggests that the depen-
dence among entity pairs is more useful for relational rea-
soning than the dependence among entities or mentions.

Second, we follow Nan et al. (2020) to also report Intra-
F1/Inter-F1 scores in Table 2, where these two metrics only
consider intra- and inter-sentence relations, respectively. Al-
though our model achieves a slight gain on Intra-F1, it yields
a significant improvement of 2.08 Inter-F1 points over the
competitive baseline SIRE-BERT. This reveals that the ad-
vantage of our model lies in extracting cross-sentence rela-
tions, most of which require the help of relational reasoning.

Third, in the bottom box of Table 2, we also train our
model utilizing the vanilla knowledge distillation (Hinton
et al. 2015) and R-Drop (Wu et al. 2021a), respectively.
Compared with these two variants, our model still achieves
better performance, indicating that our self-distillation train-
ing framework can stimulate the reasoning ability of our
model more effectively.

Fourth, we report a new metric, Infer-Ac, to verify that our
model can effectively model four common reasoning pat-
terns (See Table 1). Unlike previous metrics, Infer-Ac mea-
sures the prediction accuracy of relation triples that conform
to this four reasoning patterns in the dataset. On this metric,
our model also significantly exceeds previous baselines.

Results on the Biomedical Datasets
As shown in Table 3, our model still outperforms all base-
lines on two biomedical datasets, GDA and CDR, demon-
strating that our model is also general to the biomedical do-
main. Moreover, we find that the improvement of our model
on GDA is more significant than that on CDR. The underly-
ing reason is that our self-distillation training framework is
more advantageous in the scenario of large amounts of data.

Ablation Study
Then, we remove different components from our model, and
show the performance of our model variants in Table 4.

(1) w/ R-MSA→MSA. In this variant, we replace our R-
MSA unit with the standard multi-head self-attention (MSA)
that directly uses the information of all other entity pairs

Model IgnF1 F1

Ours-BERT 60.85 62.81

w/ R-MSA→MSA 57.45 59.39
w/ Only the first reasoning pattern 60.25 62.16
w/o The first branch 59.58 61.53
w/o The second branch 60.46 62.38
w/o Curriculum Learning 60.61 62.56

Table 4: Ablation study of our model on the development
set of DocRED.

to enhance the representation of each considered one. As
shown in Line 3 of Table 4, this replacement causes a sig-
nificant performance drop. For this result, we speculate that
MSA introduces much noise, and thus it cannot effectively
infer the relations of masked entity pairs during training. Be-
sides, since this variant has the same number of parameters
as our model, this result also proves that the performance
gain of our model does not stem from the increase of param-
eters.

(2) w/ Only the first reasoning pattern. Similar to previous
studies that only consider the first reasoning pattern (e.g.,
SIRE-BERT and KD-BERT in Table 2), we only model
the first reasoning pattern in this variant. Back to Line 4
of Table 4, we also note that this variant is inferior to our
model, indicating that our four reasoning patterns indeed
cover more relational triplets. Furthermore, this variant still
outperforms the above baselines, indirectly proving the ef-
fectiveness of our self-distillation training framework.

(3) w/o The first branch. When we remove the first branch
from our self-distillation training framework, the perfor-
mance of our model sharply drops (See Line 5 of Table 4).
Thus, we confirm that the training of the first branch can
effectively enhance the reasoning ability of our model.

(4) w/o The second branch. We train this variant only
through the first branch, which, however, leads to a perfor-
mance decline (See Line 6 of Table 4). The underlying rea-
son is that the masking operation in the first branch causes
the input gap between training and testing of our model.

(5) w/o Curriculum Learning. In this variant, we discard
our curriculum learning strategy. As shown in Line 7 of Ta-
ble 4, the performance of our model drops, proving that this
strategy is important for the training of our model.

Reasoning Performance
Following Zeng et al. (2020), we compare models in terms
of Infer-F1, aiming to evaluate the multi-hop reasoning abil-
ity of models. From Table 5, we observe that our model sig-
nificantly outperforms GAIN-BERT by 3.22 Infer-F1 points.
Meanwhile, removing the first branch or reasoning module
from our model results in a significant performance drop.
These results show that both reasoning module and the self-
distillation training framework can effectively improve the
reasoning ability of our model.

Furthermore, we conduct an interesting experiment to fur-
ther verify the reasoning ability and robustness of our model.
Specifically, we also perform masking operation with differ-
ent mask rates during testing, of which experimental results
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Model Infer-F1 P R

GAIN-GloVe 40.82 32.76 54.14
SIRE-GloVe 42.72 34.83 55.22

BERT-RE 39.62 34.12 47.23
GAIN-BERT 46.89 38.71 59.45

Ours-BERT 50.11 42.99 60.05
w/o The first branch 47.92 40.03 59.68
w/o Reasoning module 46.62 38.42 59.29

Table 5: Infer-F1 scores on the development set of DocRED.

are reported in Figure 5. When the mask rate is less than
0.3 during testing, the performance of our model only drops
slightly. This is because our model is trained with a mask
rate of 0.2. Surprisingly, even if the mask rate increases to
0.8, our model still achieves an F1 score of 55.17, outper-
forming that of BERT-TS (Wang et al. 2019) in Table 2.

Related Work
Sentence-level RE has received considerable attention in the
past decade. Many approaches have been proposed to tackle
this task effectively (Zeng et al. 2015; Wang et al. 2016;
Zhang et al. 2017; Feng et al. 2018; Yu et al. 2020; Wu et al.
2021b). However, a large number of relational facts are ex-
pressed across sentences in real-world applications (Verga,
Strubell, and McCallum 2018; Yao et al. 2019). Therefore,
some recent studies have shifted their attention to document-
level RE (Zeng et al. 2020; Zhou et al. 2021; Zhang et al.
2021; Tan et al. 2022).

In this regard, due to the advantages of GNNs in relational
reasoning, many GNN-based models have been proposed for
document-level RE (Guo et al. 2019; Zeng et al. 2020; Nan
et al. 2020; Xu et al. 2021). Generally, they first construct
a document graph utilizing dependency structures, heuristic
rules, or structured attention, and then employ GNNs (Liang
et al. 2016; Guo et al. 2019) to perform reasoning on this
graph. Nan et al. (2020) builds a latent document-level graph
based on the structured attention mechanism and proposes a
refinement strategy to enable the model to incrementally ag-
gregate relevant information for multi-hop reasoning. Zeng
et al. (2020) constructs two graphs, mention-level and entity-
level graphs, to model the dependence among entities and
mentions, respectively. Xu et al. (2021) introduces a path
reconstructor into the document graph, which ensures the
model pays more attention to entity pairs with relations.

Meanwhile, considering the transformer architecture can
implicitly model long-distance dependencies, some studies
directly utilize PLMs to learn better entity or entity pair rep-
resentations for document-level RE (Wang et al. 2019; Zhou
et al. 2021; Tang et al. 2020; Zhang et al. 2022). For exam-
ple, Zhou et al. (2021) proposes adaptive thresholding loss
and localized context pooling to solve the multi-label and
multi-entity problems. Furthermore, some researchers put
efforts into leveraging the dependence among entity pairs to
infer implicit relations between entities (Zhang et al. 2021;
Tan et al. 2022). Zhang et al. (2021) reformulates document-
level RE task as a semantic segmentation problem and uses

Figure 5: The performance of our model with different mask
rates during testing on the development set of DocRED.

CNNs to capture the dependence among entity pairs. How-
ever, the above approaches suffer from two obvious draw-
backs: 1) they often consider only one reasoning pattern (See
the first reasoning pattern in Table 1), of which coverage on
relational triple is limited; 2) they do not explicitly model the
process of relational reasoning. These two defects seriously
limit the performance of document-level RE models.

In this work, we propose a document-level RE model
with a reasoning module that comprehensively considers
four common reasoning patterns. Besides, inspired by re-
cent studies of self-distillation methods in the communities
of CV and NLP (Clark et al. 2019; Zeng et al. 2019; Zhang
et al. 2019; Liu et al. 2020; Wu et al. 2022; Kong et al. 2022;
Zhou et al. 2022), we explore a self-distillation based rela-
tional reasoning training framework for document-level RE,
which explicitly models the process of relational reasoning.
To the best of our knowledge, our work is the first attempt
to explore the self-distillation framework to enhance the re-
lational reasoning ability of the document-level RE model.
Finally, please note that our self-distillation training frame-
work is also related to R-Drop (Wu et al. 2021a). However,
the difference between them is that we perform masking op-
eration on the first branch to train the reasoning ability of
the model more effectively, and the experimental results also
prove that our framework is superior to R-Drop.

Conclusion and Future Work
In this paper, we have proposed a document-level RE model,
which simultaneously models four common reasoning pat-
terns to better infer the implicit relations between entities.
Furthermore, we have proposed a self-distillation training
framework for our model. By explicitly modeling the re-
lational reasoning process, this framework is able to pro-
vide more explicit supervisory signals for the relational rea-
soning training of our model. Experimental results on three
commonly-used datasets demonstrate that our model outper-
forms all existing competitive baselines.

In further, we will extend our training framework to
a semi-supervised setting. Besides, we plan to apply our
model to other relational reasoning tasks, such as Knowl-
edge Graph Completion, so as to verify its generality.
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